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Abstract
Background Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease characterized by clinical and 
pathological diversity. Mitochondrial dysfunction has been identified as a critical pathogenetic factor in SLE. However, 
the specific molecular aspects and regulatory roles of this dysfunction in SLE are not fully understood. Our study aims 
to explore the molecular characteristics of mitochondria-related genes (MRGs) in SLE, with a focus on identifying 
reliable biomarkers for classification and therapeutic purposes.

Methods We sourced six SLE-related microarray datasets (GSE61635, GSE50772, GSE30153, GSE99967, GSE81622, 
and GSE49454) from the Gene Expression Omnibus (GEO) database. Three of these datasets (GSE61635, GSE50772, 
GSE30153) were integrated into a training set for differential analysis. The intersection of differentially expressed genes 
with MRGs yielded a set of differentially expressed MRGs (DE-MRGs). We employed machine learning algorithms—
random forest (RF), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO) 
logistic regression—to select key hub genes. These genes’ classifying potential was validated in the training set and 
three other validation sets (GSE99967, GSE81622, and GSE49454). Further analyses included differential expression, 
co-expression, protein-protein interaction (PPI), gene set enrichment analysis (GSEA), and immune infiltration, 
centered on these hub genes. We also constructed TF-mRNA, miRNA-mRNA, and drug-target networks based on 
these hub genes using the ChEA3, miRcode, and PubChem databases.

Results Our investigation identified 761 differentially expressed genes (DEGs), mainly related to viral infection, 
inflammatory, and immune-related signaling pathways. The interaction between these DEGs and MRGs led to the 
identification of 27 distinct DE-MRGs. Key among these were FAM210B, MSRB2, LYRM7, IFI27, and SCO2, designated 
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Background
Systemic lupus erythematosus (SLE) is a chronic inflam-
matory autoimmune disease that primarily affects 
females of childbearing age, with a male to female ratio 
of 1:9, and is characterized by the production of a vari-
ety of autoantibodies that can affect multiple organs [1, 
2]. The prevalence of SLE in adults globally ranges from 
30 to 150 per 100,000 individuals, with incidence ranging 
from 2.2 to 23.1 per 100,000 individuals per year, and var-
ies by region and ethnicity [3]. Despite improvements in 
SLE survival rates over the past few decades, premature 
mortality remains two to three times higher than that 
of the general population [4], highlighting the persistent 
challenges in managing this disease.

Firstly, the clinical presentation of SLE is highly het-
erogeneous, with an increasing number of atypical cases, 
leading to confusion in classification and delays in treat-
ment initiation. Secondly, treatment of SLE typically 
involves immunosuppressive therapy, such as broad-
spectrum immunosuppressants and glucocorticoids. 
However, these treatments are not uniformly effective, 
and several patients may experience relapse. Additionally, 
long-term use of these drugs can cause organ damage 
and have substantial toxic effects. SLE results from dif-
ferent pathogenic mechanisms, leading to a wide range of 
clinical manifestations and cellular and molecular foun-
dations. Therefore, uncovering the underlying molecular 
mechanisms of SLE is of great clinical significance for its 
classification and management.

Recent research has shown that mitochondrial dys-
function is a critical factor in the pathogenesis of SLE 
[5–7]. Mitochondria, which are autonomous double-
membrane organelles, play a key role in many intracel-
lular processes such as oxidative phosphorylation, amino 
acid biogenesis, fatty acid catabolism, calcium homeo-
stasis, and apoptosis [8]. Therefore, mitochondria are 
crucial for maintaining normal cellular physiology. Struc-
tural damage and functional alterations of mitochondria 
can cause various pathological states, including damage 
to mitochondrial DNA (mtDNA), changes in mitochon-
drial dynamics, abnormal mitochondrial biogenesis and 
energy metabolism, oxidative stress, and inflammatory 
reactions. All of these factors contribute to the patho-
genesis of SLE. In addition, mitochondria are involved 

in the cell death pathway, including apoptosis, necrosis, 
and NETosis in neutrophil granulocytes, which is another 
mechanism that leads to the emergence of SLE. Other 
pathways, such as changes in mitochondrial dynamics 
and mitophagy, also contribute to the onset of SLE. Tar-
geting cellular metabolic changes in mitochondria has 
been shown to have therapeutic effects [9, 10]. Hence, the 
genes associated with mitochondrial function, or mito-
chondrial-related genes (MRGs), may hold vital clues for 
the molecular mechanisms of this disease.

Moreover, with recent advances in bioinformatics and 
machine learning, we now have the capability to delve 
deeper into a wide range of molecular mechanisms 
involved in SLE, analyzing high-throughput genetic data 
to elucidate disease progression and potentially iden-
tify novel biomarkers for classification and treatment 
[11–14]. Despite these capabilities, however, the genetic 
investigation of MRGs in the context of SLE remains 
largely unexplored, and there are currently no estab-
lished models that evaluate mitochondrial function in 
the disease. Therefore, this study was undertaken with 
the objective to delve into the molecular characteristics 
of MRGs in SLE through bioinformatics analysis and 
machine learning techniques. Our intent was not only to 
discover new biomarkers for the development and valida-
tion of a classification model but also to identify potential 
therapeutic targets for SLE.

Methods
Data acquisition and processing
The GEOquery R package [15] was employed to down-
load microarray datasets relevant to SLE from the Gene 
Expression Omnibus (GEO) online database, a public 
functional genomics database that archives and freely dis-
seminates microarray and other forms of high-through-
put data [16]. The following filtering criteria were used: 
(1) The test specimens should be from humans; (2) The 
tissue used for sequencing should be peripheral blood 
mononuclear cell (PBMC); (3) The independent expres-
sion profiles of training set should be from the same 
sequencing platform to facilitate integration. Based on 
the above criteria, seven datasets (GSE61635, GSE50772, 
GSE30153, GSE99967, GSE81622, and GSE49454) rel-
evant to SLE were finally included in this study. The 

as hub genes through machine learning analysis. Their significant role in SLE classification was confirmed in both the 
training and validation sets. Additional analyses included differential expression, co-expression, PPI, GSEA, immune 
infiltration, and the construction of TF-mRNA, miRNA-mRNA, and drug-target networks.

Conclusions This research represents a novel exploration into the MRGs of SLE, identifying FAM210B, MSRB2, LYRM7, 
IFI27, and SCO2 as significant candidates for classifying and therapeutic targeting.
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GSE61635 dataset (GPL570 platform) included 79 SLE 
and 30 normal PBMC samples, the GSE50772 dataset 
(GPL570 platform) included 81 SLE PBMC samples, 
and the GSE30153 dataset (GPL570 platform), which 
included 17 SLE and 9 normal PBMC samples, were 
merged and used as a training set for subsequent analy-
ses. The batch effects of the dataset were also removed 
using the R function ComBat, which is part of the 
sva package [17]. The GSE99967 dataset (GPL21970) 
included 42 SLE and 17 normal PBMC samples, the 
GSE81622 dataset (GPL10558) contained 30 SLE and 
25 normal PBMC samples, and the GSE49454 dataset 
(GPL10558) comprised 157 SLE and 20 normal PBMC 
samples were selected for validation analysis. All raw data 
in our investigation was subjected to normalization and 
adjustment for background, and we also cross-referenced 
all probe names with their respective gene symbols.

Additionally, the 1136 mitochondria-related genes 
(MRGs) included in Supplementary Data S1 were 
selected from the human MitoCarta 3.0 database (https://
www.broadinstitute.org/mitocarta/mitocarta30-inven-
tory-mammalian-mitochondrial-proteins-and-pathways) 
[18].

Identification of differentially expressed genes (DEGs)
The limma package in R program [19] was used to eval-
uate differentially expressed genes (DEGs) between 
SLE and healthy controls, using cutoffs for adjustment: 
p-value < 0.05 and FC (fold changes) > 1.5. The volcano 
plot and heatmap of the DEGs were visualized using the 
ggplot2 R package [20].

Functional enrichment analysis of DEGs
To gain a better understanding of the role of DEGs in 
SLE, we conducted Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses using clusterProfiler, an R-package [21]. For 
data that has been adjusted for the false discovery rate 
(P < 0.05), the Benjamini-Hochberg multiple correction 
method was utilized. The GOplot R program [22] was 
used to plot the top 10 findings from GO and KEGG.

Identification of mitochondria-related hub genes based on 
machine learning algorithm
Interaction of DEGs with MRGs yielded differentially 
expressed MRGs (DE-MRGs), which were then used 
to screen mitochondria-related hub genes. To filter out 
potential hub genes from DE-MRGs, we employed three 
machine learning techniques, namely least absolute 
shrinkage and selection operator (LASSO), support vec-
tor machine (SVM), and random forest (RF), each with 
10-fold cross-validation for model stability, using the R 
packages glmnet [23], e1071 [24] and caret [25], and ran-
domForest [26]. The overlapping genes obtained from the 

three algorithms were considered as the final set of hub 
genes.

Construction and validation of the classification model for 
SLE
We utilized the neuralnet R package [27] to create an 
artificial neural network (ANN) model to differenti-
ate individuals with SLE from healthy controls based 
on the expression patterns of specific mitochondrial-
related genes. To evaluate the classification accuracy of 
the model, we calculated receiver operating character-
istic (ROC) curves and area under the curve (AUC) in 
both the training and validation sets, generated with the 
pROC R package [28]. Moreover, the decision curve anal-
ysis (DCA) and calibration curve were applied to evaluate 
the accuracy and practical applicability of the classifica-
tion model with the rms R package (https://CRAN.R-
project.org/package=rms). The purpose of this process 
was to explore the potential roles these genes could play 
in SLE pathogenesis, operating on the premise that genes 
demonstrating high classification efficacy might serve as 
promising biomarkers and have significant implications 
for understanding the disease mechanism.

Differential expression and co-expression analyses of hub 
genes
We conducted differential expression and co-expres-
sion analyses on the expression data of hub genes from 
the training set using the R packages igraph [29] and 
reshape2 [30]. These analyses allowed us to investigate 
the expression profiles of hub genes. Additionally, we 
used the RCircos package [31] to visualize the chromo-
somal locations of the hub genes.

Protein-protein interaction (PPI) analysis of hub genes
In order to further reveal the potential relationships 
between proteins encoded by these hub genes, we per-
formed a PPI enrichment analysis for core shared genes 
using GeneMANIA [32]. A combined score > 0.4 inter-
action was considered statistically significant. GeneMA-
NIA is an online tool that generates hypotheses about 
gene functions, evaluates gene lists, and ranks genes by 
priority for functional testing.

Immune Infiltration analysis of Hub genes
The relationship between immune infiltration and the 
development and progression of SLE is well established. 
Thus, we evaluated the relationship between the hub 
genes and the immune cells using the CIBERSORT algo-
rithm (https://cibersort.stanford.edu/). CIBERSORT is 
a deconvolution algorithm that calculates the propor-
tion of different immune cell types based on the expres-
sion levels of immune cellrelated genes. The output 
results of 22 infiltrating immune cells were integrated, 
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and nonparametric correlations (Spearman) method was 
used to determine the correlation between the hub genes 
and immune-infiltrated cells, which was visualized using 
the R packages ggplot2 [20].

Gene set enrichment analysis (GSEA) of hub genes
In addition, we conducted GSEA analysis using the clus-
terProfiler program [21] to identify the biological pro-
cess involving the hub genes. GSEA is a method based 
on functional categories that could calculate the enrich-
ment score of gene sets and discover different functional 
phenotypes. Based on the median expression of the hub 
genes, SLE patients were categorized into high- and 
low-expression groups. Then, we used GSEA to com-
pare the biological pathways between the two groups. 
The “h.all.v2022.1.Hs.entrez.gmt” file was downloaded 
for GSVA analysis from the Molecular Signatures Data-
base (MSigDB, http://software.broadinstitute.org/gsea/
msigdb). Enriched gene sets with nominal P values of 
< 0.05, |normalized enrichment scores (NES) | > 1 and 
FDR q values of < 0.25 were considered significant.

Regulation networks of hub genes construction
We used the ChIP-X Enrichment Analysis 3 (ChEA3) 
platform (https://maayanlab.cloud/chea3/) to submit 
the hub genes for transcription factors (TFs) prediction 
[33]. ChEA3 is a TF prediction database, which integrates 
ENCODE, ReMap, GTEx, Enrichr, ARCHS4 and Litera-
ture ChIP databases. We also used the miRcode database 
(http://www.mircode.org) [34] to predict the hub genes-
targeted miRNAs. Cytoscape [35] was used to construct 
and visualize the TF-mRNA and miRNA-mRNA net-
works. Additionally, we used the R package networkD3 
[36] to display a Sankey diagram depicting the antici-
pated biological activities of small molecules associated 
with the hub genes from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) [37].

Statistical analysis
Unless specified otherwise, all analyses and visualizations 
were conducted using R software (version.4.2.1). The Stu-
dent’s t-test was utilized for the evaluation of variables 
adhering to a normal distribution, whereas the Wilcoxon 
rank-sum test was employed for variables that were not 
normally distributed. Normality was assessed using the 
Shapiro-Wilk test. A two-sided P value of less than 0.05 
was considered statistically significant. Concurrently, for 
the identification of differentially expressed genes, crite-
ria for statistical significance were set as an adjusted P 
value (adj.P) less than 0.05 and a fold change (FC) greater 
than 1.5.

Results
Identification of DEGs in SLE
Three microarray datasets (GSE61635, GSE50772, 
GSE30153) comprising of 177 SLE and 39 normal PBMC 
samples were merged and utilized as the training set for 
this study. Figure  1 depicts a comprehensive flowchart 
of the research procedure. Principal component analysis 
(PCA) was employed to identify inherent batch differ-
ences in the training set (Fig. 2A). To improve the efficacy 
of the subsequent analysis, we used the “ComBat” algo-
rithm to address the batch effects. The batch-correction 
methods successfully eliminated the batch effects to a 
certain degree (Fig.  2B). Then, differential expression 
analysis was performed on the training set to screen 
for differentially expressed genes (DEGs). A total of 761 
significant DEGs associated with SLE were identified, 
including 446 upregulated and 315 downregulated genes, 
based on significance criteria (Supplementary Data S2). 
The results were shown in a volcano plot (Fig.  2C). In 
addition, the top 100 DEGs, ranked according to adjusted 
P-values, were displayed in a heatmap (Fig. 2D).

Functional annotation and pathway enrichment of DEGs
According to GO-BP analysis, the DEGs were consid-
erably enriched in activities associated with immune 
responses, such as response to interferon-alpha, response 
to lipopolysaccharide, response to type I interferon, 
response to molecule of bacterial origin, cellular response 
to type I interferon, cellular response to lipopolysac-
charide, immune response-regulating signaling path-
way, regulation of innate immune response, and pattern 
recognition receptor signaling pathway (Fig.  3A). The 
findings of the GO-CC analysis were primarily gran-
ules and lumens of various immune cells (Fig.  3B). The 
double-stranded RNA binding, chemokine binding, sin-
gle-stranded RNA binding, spectrin binding, immune 
receptor activity, translation repressor activity, DNA-
binding transcription activator activity, and complement 
receptor activity were the key outcomes of enrichment 
analysis in GO-MF (Fig. 3C). Besides, investigation of the 
KEGG pathway analysis primarily suggested that these 
DRGs were involved in virus-related diseases, including 
Influenza A, Measles, Epstein-Barr virus infection, and 
Coronavirus disease - COVID-19, and inflammatory and 
immune-related signaling pathways such as NOD-like 
receptor signaling pathway, NF-kB signaling pathway, 
IL-17 signaling pathway, TNF signaling pathway, PD-L1 
expression, and PD-1 checkpoint pathway, and B cell 
receptor signaling pathway (Fig. 3D).

Identification of hub genes for SLE
Following the analysis of the interaction between DEGs 
and MRGs, a total of 27 DE-MRGs were identified and 
listed in Supplementary Data S3. Gene expression levels 
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of these DE-MRGs were then employed as characteris-
tics by the three machine learning methods to distinguish 
between SLE and healthy controls. The lowest error rate 
and most stable results were achieved using 383 trees 
in the RF classifier (Fig.  4A). Therefore, to estimate the 
dimensional significance of the 27 DE-MRGs, we settled 
on 383 trees as the last parameter in the RF classifier, and 
the resulting MeanDecreaseGini findings are shown in 
Fig.  4B. 8 candidate hub genes were discovered, includ-
ing SCO2, SPTLC2, IFI27, MSRB2, FAM210B, CMPK2, 
ALDH5A1, and LYRM7 from the DE-MRGs after settling 
on a screening threshold of 5 based on the significance 
of the MeanDecreaseGini result. Besides, as shown in 
Fig. 4C, the SVM model has the minimum classification 
error [minimal root-mean-square error (RMSE) = 0.248] 
in the condition of 25 candidate genes, so 25 genes 
were recognized as key characteristic genes from the 
DE-MRGs, including IFI27, SPTLC2, SCO2, MSRB2, 
CMPK2, LYRM7, ALDH5A1, FAM210B, BCL2A1, 
PRSS35, MTFR2, BIK, SLC25A39, LAP3, HINT3, 
ABCD2, LIG3, GUK1, MICU3, HAGH, PNPT1, BCL2L1, 
ACSL6, PMAIP1, and ALAS2. In LASSO logistic 

regression, the optimal lambda of LASSO logistic regres-
sion was 0.0175054 (Fig. 4D and E), thus extracting nine 
key characteristic genes from the DE-MRGs, comprised 
of BCL2A1, BIK, FAM210B, IFI27, LYRM7, MSRB2, 
MTFR2, PRSS35, and SCO2. Finally, FAM210B, MSRB2, 
LYRM7, IFI27, and SCO2, overlapping genes by the three 
algorithms, were selected as hub genes (Fig. 4F).

Performance of hub genes to classify SLE
Next, an ANN model for classifying SLE was developed 
utilizing five hub genes, achieving an AUC of 0.967 (95% 
CI 0.945–0.984) on the training set, as shown in Fig. 5A 
and B. Furthermore, the performance of this ANN 
model was tested on three distinct validation datasets 
(GSE99967, GSE81622, and GSE49454), and it was shown 
to perform well in the validation sets, with AUCs of 0.790 
(95% CI 0.626–0.934), 0.777 (95% CI 0.624–0.899), and 
0.731 (95% CI 0.563–0.872), respectively (Fig. 5C, D, and 
E); its performance was further substantiated by the cali-
bration curve and DCA (Figure S1).

Fig. 1 The study flow chart
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Gene expression patterns and PPI network
Afterwards, we examined the gene expression patterns 
in the training data. We found that the expression levels 
of IFI27, MSRB2, and SCO2 were significantly higher in 
SLE patients compared to normal controls, while the lev-
els of FAM210B and LYRM7 were significantly lower, as 
determined by the Wilcoxon rank-sum test (Fig. 6A). The 
gene relationship network indicated a close link between 

these hub genes and suggested that IFI27, MSRB2, and 
SCO2 might have opposing regulatory effects compared 
to FAM210B and LYRM7 in the pathogenesis of the dis-
ease (Fig. 6B).

Furthermore, we constructed a PPI network for the 
five hub genes, which included 20 other genes such as 
FAM210A, SCO1, UQCRFS1, IFI6, IFI27L2, IFI27L1, 
MSRB3, MSRB1, NR4A1, IRF9, COA6, COX17, STAT2, 

Fig. 2 Identification of DEGs. A. PCA results for the combined expression profile before and after Combat. B. Volcano plot displaying DEGs, with fold 
change > 1.5 and adjusted p-value < 0.05. C. Heatmap of the top 100 DEGs ranked by adjusted p-values, indicating gene expression trends in different 
PBMC. DEGs: differentially expressed genes; PCA: principal component analysis; PBMC: peripheral blood mononuclear cell
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Fig. 3 Functional annotation and pathway enrichment of DEGs. A. Top 10 biological process (BP) GO pathways. B. Top 10 cellular component (CC) GO 
pathways. C. Top 10 molecular function (MF) GO pathways. D. Top 10 KEGG pathways. DEGs: differentially expressed genes; GO: gene ontology; KEGG: 
Kyoto Encyclopedia of Genes and Genomes
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ADAM10, ISG15, STAT1, MX1, IFITM1, OAS1, and 
TANGO2, which were mainly involved in the functions 
of Response to type I interferon, Cellular response to type 
I interferon, Cytochrome complex assembly, Response 
to virus, and Mitochondrial respiratory chaincomplex 
assembly (Fig. 6C).

Additionally, we illustrated the chromosomal locations 
of the five hub genes: FAM210B (chr20), MSRB2 (chr10), 
LYRM7 (chr5), IFI27 (chr14), and SCO2 (chr22) (Fig. 6D).

Immune infiltration and GSEA of hub gene
Subsequently, we investigated the relationship between 
the hub genes and immune cells and noted that the 
core genes were closely linked with most immune cells 
(Fig.  6E). Furthermore, we performed GSEA of the 
hub genes on SLE samples and found that these genes 
were mainly enriched in inflammatory and immune-
related signaling pathways (Fig.  7A-E). Combining 
the GSEA data from the hub genes revealed nine com-
mon pathways, including IL6_JAK_STAT3_SIG-
NALING, INTERFERON_ALPHA_RESPONSE, 
INFLAMMATORY_RESPONSE, COMPLEMENT, 

TNFA_SIGNALING_VIA_NFKB, HEME_METABO-
LISM, APOPTOSIS, CHOLESTEROL_HOMEOSTASIS, 
and INTERFERON_GAMMA_RESPONSE (Fig. 7F).

TF-mRNA, miRNA-mRNA, and drug-target networks
Additionally, we employed the ChEA3 platform to deter-
mine the most important transcription factor of the hub 
genes (Fig. 8A). As a result, there were 316 intersecting 
transcription factors enriched (Supplementary Data S4), 
of which the top 10 TFs ranked according to mean scores 
were shown in Fig.  8B. Similarly, 110 miRNAs were 
obtained from the online database miRcode based on the 
hub genes (Supplementary Data S5), and the miRNA-
mRNA network was constructed as shown in Fig.  8C. 
Furthermore, we also mined the PubChem database for 
hub genes associated with mitochondrial dysfunction to 
identify potential drug targets for treating SLE. Total drug 
target prediction yielded 131 hits, 55 for FAM210B, 42 
for MSRB2, 23 for LYRM7, 79 for IFI27, and 25 for SCO2 
(Supplementary Data S6). Copper, sodium arsenite, acet-
aminophen, decitabine, estradiol, formaldehyde, sili-
con dioxide, benzo(a)pyrene, tetrachlorodibenzodioxin, 

Fig. 4 Identification of hub genes for SLE. A-B. RF to screen key characteristic genes. (A) The influence of decision tree number on error rate. (B) Gini 
importance measure of characteristic MRGs. C-E. LASSO logistic regression to screen key characteristic genes. C. RMSE of key characteristic gene combi-
nation. D. LASSO coefficient spectrum of nine genes. E. Optimal penalization coefficient lambda selection. F. Venn diagram of key characteristic genes; 
overlapping genes selected as hub genes. SLE: systemic lupus erythematosus; RF: random forest; MRGs: mitochondria-related genes; RMSE: root-mean-
square error; LASSO: least absolute shrinkage and selection operator
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arsenite, phenylmercuric acetate, trichostatin A, cyclo-
sporine, valproic acid, and bisphenol A, were among the 
15 target drugs with evidence greater than two indepen-
dent research articles indicating their interaction with 
the target genes (Fig. 8D).

Discussion
Systemic lupus erythematosus (SLE) is a complex auto-
immune disease that affects nearly five million individu-
als worldwide. Elucidating molecular pathways is crucial 
for the personalized classification and treatment of SLE, 
which is caused by a complex network of immune-
inflammatory pathogenic mechanisms and many diverse 
variables. The mitochondrial dysfunction has been found 
to be strongly implicated in pathogenesis of SLE, there-
fore we employed bioinformatics methods to analyze 
MRGs and their potential functions in SLE in this study, 
which may contribute to a better understanding of the 
disease and aid in the development of reliable biomarkers 
for the personalized classification and effective treatment 
of the disease.

In the present study, three datasets containing 177 SLE 
and 39 normal controls were merged and analyzed as a 
training set. A total of 761 DEGs associated with SLE 
were identified, and then annotated using the research 
results on function-related enrichment. The findings of 
the GO analysis indicate that the DEGs identified in this 

study are primarily involved in immune-related activities, 
particularly in response to interferons, lipopolysaccha-
rides, and molecules of bacterial origin. These findings 
are consistent with previous studies on SLE, which have 
demonstrated the crucial role of the immune system in 
the development and progression of the disease [38]. 
The identified DEGs may be key players in the pathogen-
esis of SLE, particularly in the aberrant activation of the 
immune system against self-antigens [39]. Besides, the 
KEGG pathway analysis identified virus-related path-
ways, including Influenza A, Measles, Epstein-Barr virus 
infection, and COVID-19, as well as inflammatory and 
immune-related signaling pathways, such as the NOD-
like receptor signaling pathway, NF-kB signaling pathway, 
IL-17 signaling pathway, TNF signaling pathway, PD-L1 
expression, and PD-1 checkpoint pathway, and B cell 
receptor signaling pathway. These pathways have previ-
ously been reported to be associated with the pathogen-
esis of SLE, and their enrichment in this study further 
supports their potential involvement in the development 
and progression of the disease [40–42]. The identified 
virus-related pathways also suggest that viral infections 
may play a role in triggering the development of SLE [43, 
44]. What’s more, the GSEA results further support the 
findings of the KEGG pathway analysis, highlighting the 
enrichment of inflammatory and immune-related signal-
ing pathways, such as complement, IL-6, JAK-STAT3, 

Fig. 5 Performance of hub genes to classify SLE. A. Disease classification model constructed by an ANN. B-E. ROC curves for model classification of SLE in 
training and three validation sets. SLE: systemic lupus erythematosus; ANN: artificial neural network; ROC: receiver operating characteristic
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Fig. 6 Hub genes in SLE. A. Differential expression levels of hub genes between SLE and healthy controls in the training set. B. Gene relationship network 
of hub genes. C. PPI network of hub genes and interacting proteins. D. Chromosomal locations of hub genes. E. Correlation matrix between hub genes 
and immune cells. SLE: systemic lupus erythematosus; PPI: protein-protein interaction
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IFN-α, INF-γ, TNF-α, and NF-kB signaling pathways. 
These pathways have been implicated in the pathogen-
esis of autoimmune diseases, including SLE [45–47], and 
their enrichment in this study suggests that the iden-
tified DEGs may play a crucial role in the development 
and progression of the disease. Overall, the results of this 
study provide insights into the potential involvement of 
the identified DEGs in the pathogenesis of SLE.

Subsequently, a total of 27 DE-MRGs were identified 
after the intersection with MRGs and further used to 
screen the hub genes. In recent years, more and more 
studies have used machine learning related methods for 
hub gene selection [48]. Hence, we integrated the pre-
dictive performance of three selected machine learning 
classifiers (RF, SVM, and LASSO) and identify five hub 
genes (FAM210B, MSRB2, LYRM7, IFI27, and SCO2), 
which were then used to develop an ANN model for SLE 
classification. The model showed excellent predictive 
performance in the training and three validation sets, 
suggesting that these genes may be important biomarkers 
for SLE classification.

IFI27, in particular, has been associated with type I 
interferon-induced apoptosis [49], and may have poten-
tial as a classification marker or immunotherapeutic 
target for SLE [50–52]. FAM210B and LYRM7 have 
important roles in regulating mitochondrial energy 
metabolism and the stability of mitochondrial accessory 
factors, respectively [53, 54]. MSRB2 has been shown to 

play a key role in mitophagy, which is a process that scav-
enges ROS and promotes cell survival [55]. SCO2 is criti-
cal for the synthesis and assembly of subunits required 
for the functioning of respiratory complex IV, and has 
been implicated in both promoting ROS generation and 
oxidative DNA damage, as well as activating the apop-
totic pathway in response to stress [56–58]. These results 
indicate that the identified hub genes may play important 
roles in the pathogenesis of SLE by contributing to mito-
chondrial dysfunction, oxidative stress, and cell death 
pathways. However, the specific roles of the hub genes in 
the development and progression of SLE are not yet fully 
understood, and further research using functional studies 
is necessary to elucidate the mechanisms by which these 
genes contribute to SLE pathogenesis.

In addition, the results of the differential expres-
sion and co-expression analyses indicated that IFI27, 
MSRB2, and SCO2 may have counteractive regulatory 
effects when compared to FAM210B and LYRM7 in 
the progression of SLE, which was corroborated by the 
outcomes of immune infiltration and GSEA. Given the 
strong correlation among the hub genes, we explored 
their shared pathways, and integration of GSEA data 
from the five hub genes revealed numerous inflamma-
tory and immune-related signaling pathways closely 
related to SLE including IL6_JAK_STAT3_SIGNALING, 
INTERFERON_ALPHA_RESPONSE, and TNFA_SIG-
NALING_VIA_NFKB [45–47]. These findings suggest 

Fig. 7 GSEA of hub genes. A-E. Pathways enriched in FAM210B, IFI27, LYRM, MSRB2, and SCO2. F. Venn diagram of shared pathways. GSEA: gene set 
enrichment analysis
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that the hub genes were involved in the pathogenesis of 
SLE by regulating these pathways. Moreover, the regu-
latory protein network linked with the hub genes also 
indicated their involvement in interferon signaling path-
ways. Thus, the identified hub genes exhibit the potential 
to serve as valuable biomarkers for SLE, and our findings 
offer important insights into the molecular mechanisms 
that underlie SLE, which can guide future research in this 
field.

In this study, we constructed regulatory networks 
for hub genes using transcription factors and miRNAs, 
providing a theoretical basis for further investigation. 
Besides, researchers have focused on developing tar-
geted therapies based on these key hub genes that play 
a significant role in SLE pathology. Using the PubChem 
database, we identified prospective targeted drugs based 
on the mitochondria-related hub genes that could serve 
as a valuable reference for developing novel therapeu-
tic strategies for SLE. Acetaminophen and cyclospo-
rine are known to modulate mitochondrial functions 
and have established roles in clinical management of 
SLE due to their effects on mitochondrial biogenesis 
and autophagy, processes that are often dysregulated in 

SLE patients. Epigenetic mechanisms, increasingly rec-
ognized as pivotal in lupus pathogenesis, offer another 
therapeutic avenue. Agents like Trichostatin A, a histone 
deacetylase inhibitor, have been shown to alter histone 
acetylation, thereby potentially correcting aberrant gene 
expression profiles in SLE [59–62]. Decitabine, a DNA 
demethylating drug, may ameliorate disease symptoms 
by reversing pathogenic DNA methylation patterns [63]. 
Moreover, our analysis suggests that TCDD, despite its 
notoriety as a carcinogen, exhibits properties that can 
attenuate inflammation in SLE, which includes inhibition 
of immune cell proliferation and cytokine production, as 
well as promotion of immunosuppressive cell differen-
tiation [64–68]. Similarly, benzo(a)pyrene’s influence on 
gene expression modulation points to its potential utility 
in reducing inflammation and pain, a therapeutic concept 
extrapolated from its use in other autoimmune condi-
tions like rheumatoid arthritis [69]. Overall, these find-
ings provide valuable insights into potential treatment 
options for SLE and lay a foundation for further research 
into the mechanisms underlying the disease.

Our research, while providing valuable insights, also 
inevitably has some limitations. Firstly, our analysis 

Fig. 8 Regulation Networks of Hub Genes. A. TF prediction based on ChEA3 platform B. TF-mRNA network. C. miRNA-mRNA network. D. Drug-target 
network. TF: transcription factor; ChEA3: ChIP-X Enrichment Analysis 3
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focused on the gene expression profiles of PBMCs and 
whole blood, which, though informative, may not fully 
encapsulate the complex pathogenesis of SLE. Investigat-
ing cell-specific expression within distinct immune cell 
types and other affected tissues could yield more compre-
hensive insights into the disease mechanisms. Secondly, 
the datasets we utilized were generated from microarray 
technology, which presents challenges such as inconsis-
tencies across different detection platforms and variabil-
ity due to diverse specimen origins. These factors could 
potentially impact the reliability and generalizability 
of our findings. While our machine learning model has 
shown effectiveness in predicting SLE, further valida-
tion with external, independent datasets is imperative to 
solidify its predictive power. Lastly, our study is limited 
by the absence of experimental validation. Computa-
tional analyses, though powerful, are complemented by 
empirical experiments. Practical laboratory experiments 
and in-depth model evaluations are essential to corrobo-
rate the biological relevance and clinical applicability of 
our results.

In summary, this study provides the first evidence 
that the mitochondria-related genes FAM210B, MSRB2, 
LYRM7, IFI27, and SCO2 could be useful biomarkers 
for the classification and treatment of SLE. These find-
ings contribute to our understanding of the role of mito-
chondrial dysfunction in SLE and highlight the need for 
further investigation in this area to improve classification 
and treatment, ultimately leading to improved patient 
outcomes.
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