Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–30. https://doi.org/10.1038/nrrheum.2016.186.
Article
CAS
PubMed
Google Scholar
Gulinello M, Wen J, Putterman C. Neuropsychiatric symptoms in lupus. Psychiatr Ann. 2012;42(9):322–8. https://doi.org/10.3928/00485713-20120906-05.
Article
PubMed
PubMed Central
Google Scholar
Jarpa E, Babul M, Calderón J, González M, Martínez ME, Bravo-Zehnder M, et al. Common mental disorders and psychological distress in systemic lupus erythematosus are not associated with disease activity. Lupus. 2011;20(1):58–66. https://doi.org/10.1177/0961203310381773.
Article
CAS
PubMed
Google Scholar
Unterman A, Nolte JE, Boaz M, Abady M, Shoenfeld Y, Zandman-Goddard G. Neuropsychiatric syndromes in systemic lupus erythematosus: a meta-analysis. Semin Arthritis Rheum. 2011;41(1):1–11. https://doi.org/10.1016/j.semarthrit.2010.08.001.
Article
PubMed
Google Scholar
Borowoy AM, Pope JE, Silverman E, Fortin PR, Pineau C, Smith CD, et al. Neuropsychiatric lupus: the prevalence and autoantibody associations depend on the definition: results from the 1000 faces of lupus cohort. Semin Arthritis Rheum. 2012;42(2):179–85. https://doi.org/10.1016/j.semarthrit.2012.03.011.
Article
PubMed
Google Scholar
Chen C, Geng L, Xu X, Kong W, Hou Y, Yao G, Feng X, Zhang H, Liang J. Comparative proteomics analysis of plasma protein in patients with neuropsychiatric systemic lupus erythematosus. 2020;8(9):579. https://doi.org/10.21037/atm.2020.04.58.
Hanly JG. Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol. 2014;10(6):338–47. https://doi.org/10.1038/nrrheum.2014.15.
Article
CAS
PubMed
Google Scholar
Govoni M, Bortoluzzi A, Padovan M, Silvagni E, Borrelli M, Donelli F, et al. The diagnosis and clinical management of the neuropsychiatric manifestations of lupus. J Autoimmun. 2016;74:41–72. https://doi.org/10.1016/j.jaut.2016.06.013.
Sutin AR, Stephan Y, Luchetti M, Terracciano A, et al. Five-factor model personality traits and cognitive function in five domains in older adulthood. BMC Geriatr. 2019;19(1):343. https://doi.org/10.1186/s12877-019-1362-1.
Shyu YI, Yip PK. Factor structure and explanatory variables of the mini-mental state examination (MMSE) for elderly persons in Taiwan. J Formos Med Assoc. 2001;100(10):676–83.
CAS
PubMed
Google Scholar
Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.
Galvin JE, Roe CM, Powlishta KK, et al. The AD8: a brief informant interview to detect dementia. Neurology. 2005;65(4):559–64. https://doi.org/10.1212/01.wnl.0000172958.95282.2a.
Li H, Zhang T, Yu TC, Lin CC, Wong AMK. Combine wireless sensor network and multimedia technologies for cognitive function assessment. In: Proceedings of the third international conference on intelligent control and information processing (ICICIP); 2012. p. 717–20.
Google Scholar
Goette WF, Schmitt AL. Examination of regression-based discrepancy scores for the RBANS in detecting cognitive impairment from an archival sample. Arch Clin Neuropsychol. 2019;34(8):1329–39. https://doi.org/10.1093/arclin/acy100.
Gogos A, Joshua N, Rossell SL. Use of the repeatable battery for the assessment of neuropsychological status (RBANS) to investigate group and gender differences in schizophrenia and bipolar disorder. Aust N Z J Psychiatry. 2010;44(3):220–9. https://doi.org/10.3109/00048670903446882.
Article
PubMed
Google Scholar
Beatty WW. RBANS analysis of verbal memory in multiple sclerosis. Arch Clin Neuropsychol. 2004;19(6):825–34. https://doi.org/10.1016/j.acn.2003.12.001.
Gaita F, Corsinovi L, Anselmino M, Raimondo C, Pianelli M, Toso E, et al. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J Am Coll Cardiol. 2013;62(21):1990–7. https://doi.org/10.1016/j.jacc.2013.05.074.
Article
PubMed
Google Scholar
Quon RJ, Mazanec MT, Schmidt SS. Antiepileptic drug effects on subjective and objective cognition. Epilepsy Behav. 2020;104(Pt A):106906. https://doi.org/10.1016/j.yebeh.2020.106906. Epub 2020 Jan 29.
Gold JM, Queern C, Iannone VN. Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia I: sensitivity, reliability, and validity. Am J Psychiatry. 1999;156(12):1944–50. https://doi.org/10.1176/ajp.156.12.1944.
Article
CAS
PubMed
Google Scholar
Hobart MP, Goldberg R, Bartko JJ, Gold JM. Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia, II: convergent/discriminant validity and diagnostic group comparisons. Am J Psychiatry. 1999;156(12):1951–7. https://doi.org/10.1176/ajp.156.12.1951.
Article
CAS
PubMed
Google Scholar
Wilk CM, Gold JM, Bartko JJ, et al. Test-retest stability of the repeatable battery for the assessment of neuropsychological status in schizophrenia. Am J Psychiatry. 2002;159(5):838–44. https://doi.org/10.1176/appi.ajp.159.5.838.
Amaya-Amaya J, Sarmiento-Monroy JC, Caro-Moreno J, et al. Cardiovascular disease in latin american patients with systemic lupus erythematosus: a cross-sectional study and a systematic review. Autoimmune Dis. 2013;2013:794383. https://doi.org/10.1155/2013/794383. Epub 2013 Nov 3.
Amaya-Amaya J, Sarmiento-Monroy JC, Caro-Moreno J, Molano-Gonzalez N, Mantilla RD, Rojas-Villarraga A, et al. Cardiovascular disease in latin american patients with systemic lupus erythematosus: a cross-sectional study and a systematic review. Autoimmune Dis. 2013;2013:7943. https://doi.org/10.1155/2013/794383. Epub 2013 Nov 3.
Borba EF, Bonfá E. Dyslipoproteinemias in systemic lupus erythematosus: influence of disease, activity, and anticardiolipin antibodies. Lupus. 1997;6(6):533–9. https://doi.org/10.1177/096120339700600610.
Article
CAS
PubMed
Google Scholar
Muenchhoff J, Song F, Poljak A, et al. Plasma apolipoproteins and physical and cognitive health in very old individuals. Neurobiol Aging. 2017;55:49–60. https://doi.org/10.1016/j.neurobiolaging.2017.02.017.
Article
CAS
PubMed
Google Scholar
Karimi SA, Salehi I, Komaki A, Sarihi A, Zarei M, Shahidi S. Effect of high-fat diet and antioxidants on hippocampal long-term potentiation in rats: an in vivo study. Brain Res. 2013;1539:1–6. https://doi.org/10.1016/j.brainres.2013.09.029.
Article
CAS
PubMed
Google Scholar
Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, et al. High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol. 2006;13(12):1385–8. https://doi.org/10.1111/j.1468-1331.2006.01500.x.
Article
CAS
PubMed
Google Scholar
Wu A, Molteni R, Ying Z, Gomez-Pinilla F. A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience. 2003;119(2):365–75. https://doi.org/10.1016/S0306-4522(03)00154-4.
Article
CAS
PubMed
Google Scholar
Neto AM, Zantut-Wittmann DE. Abnormalities of thyroid hormone metabolism during systemic illness: the low T3 syndrome in different clinical settings. Int J Endocrinol. 2016;2016:2157583. https://doi.org/10.1155/2016/2157583.
Watad A, Mahroum N, Whitby A, Gertel S, Comaneshter D, Cohen AD, et al. Hypothyroidism among SLE patients: case-control study. Autoimmun Rev. 2016;15(5):484–6. https://doi.org/10.1016/j.autrev.2016.01.019.
Article
CAS
PubMed
Google Scholar
Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93(4):1351–8. https://doi.org/10.1210/jc.2007-2210.
Article
CAS
PubMed
Google Scholar
Zhu X, Cheng SY. New insights into regulation of lipid metabolism by thyroid hormone. Curr Opin Endocrinol Diabetes Obes. 2010;17(5):408–13. https://doi.org/10.1097/MED.0b013e32833d6d46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinrich TW, Grahm G. Hypothyroidism presenting as psychosis: myxedema madness revisited prim care companion. J Clin Psychiatry. 2003;5(6):260–6. https://doi.org/10.4088/pcc.v05n0603.
Smith CD, Grondin R, LeMaster W, Martin B, Gold BT, Ain KB. Reversible cognitive, motor, and driving impairments in severe hypothyroidism. Thyroid. 2015;25(1):28–36. https://doi.org/10.1089/thy.2014.0371.
Article
CAS
PubMed
Google Scholar
Smith EL, Shmerling RH. The American College of Rheumatology criteria for the classification of systemic lupus erythematosus: strengths, weaknesses, and opportunities for improvement. Lupus. 1999;8(8):586–95. https://doi.org/10.1191/096120399680411317.
Article
CAS
PubMed
Google Scholar
Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–91.
PubMed
Google Scholar
Hanly JG. ACR classification criteria for systemic lupus erythematosus: limitations and revisions to neuropsychiatric variables. Lupus. 2004;13(11):861–4. https://doi.org/10.1191/0961203304lu2024oa.
Article
CAS
PubMed
Google Scholar
Hay EM, Black D, Huddy A, Creed F, Tomenson B, Bernstein RM, et al. Psychiatric disorder and cognitive impairment in systemic lupus erythematosus. Arthritis Rheum. 1992;35(4):411–6. https://doi.org/10.1002/art.1780350409.
Article
CAS
PubMed
Google Scholar
Kozora E, Thompson LL, West SG, Kotzin BL. Analysis of cognitive and psychological deficits in systemic lupus erythematosus patients without overt central nervous system disease. Arthritis Rheum. 1996;39(12):2035–45. https://doi.org/10.1002/art.1780391213.
Article
CAS
PubMed
Google Scholar
Hahn RC, Petti DB. Minnesota multiphasic personality inventory-rated depression and the incidence of breast cancer. Cancer. 1988;61(4):845–8. https://doi.org/10.1002/1097-0142(19880215)61:4<845::AID-CNCR2820610434>3.0.CO;2-Q.
Article
CAS
PubMed
Google Scholar
Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20(3):310–9. https://doi.org/10.1076/jcen.20.3.310.823.
Article
CAS
PubMed
Google Scholar
Zhang BH, Tan YL, Zhang WF. Repeatable battery for the assessment of neuropsychological status as a screening test in Chinese: reliability and validity. Chin Ment Heath J. 2009;22(12):865–9.
Huang Q, Shen S, Hang Q, et al. Expression of HMGB1 and TLR4 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Ann Transl Med. 2020;8(1):9. https://doi.org/10.21037/atm.2019.12.44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weetman AP, Walport MJ. The association of autoimmune thyroiditis with systemic lupus erythematosus. Br J Rheumatol. 1987;26(5):359–61. https://doi.org/10.1093/rheumatology/26.5.359.
Article
CAS
PubMed
Google Scholar
Miller FW, Moore GF, Weintraub BD, Steinberg AD. Prevalence of thyroid disease and abnormal thyroid function test results in patients with systemic lupus erythematosus. Arthritis Rheum. 1987;30(10):1124–31. https://doi.org/10.1002/art.1780301006.
Article
CAS
PubMed
Google Scholar
Magaro M, Zoli A, Altomonte L, Mirone L, La Sala L, Barini A, et al. The association of silent thyroiditis with active systemic lupus erythematosus. Clin Exp Rheumatol. 1992;10(1):67–70.
CAS
PubMed
Google Scholar
Appenzeller S, Pallone AT, Natalin RA, Costallat LT. Prevalence of thyroid dysfunction in systemic lupus erythematosus. J Clin Rheumatol. 2009;15(3):117–9. https://doi.org/10.1097/RHU.0b013e31819dbe4c.
Article
PubMed
Google Scholar
Kumar K, Kole AK, Karmakar PS, Ghosh A. The spectrum of thyroid disorders in systemic lupus erythematosus. Rheumatol Int. 2012;32(1):73–8. https://doi.org/10.1007/s00296-010-1556-5.
Article
CAS
PubMed
Google Scholar
Berti JA, Amaral ME, Boschero AC, Nunes VS, Harada LM, Castilho LN, et al. Thyroid hormone increases plasma cholesteryl ester transfer protein activity and plasma high-density lipoprotein removal rate in transgenic mice. Metabolism. 2001;50(5):530–6. https://doi.org/10.1053/meta.2001.22514.
Article
CAS
PubMed
Google Scholar
Prieur X, Huby T, Coste H, Schaap FG, Chapman MJ, Rodríguez JC. Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J Biol Chem. 2005;280(30):27533–43. https://doi.org/10.1074/jbc.M503139200.
Article
CAS
PubMed
Google Scholar
Chin K-Y, Ima-Nirwana S, Mohamed IN, Aminuddin A, Johari MH, Ngah WZW. The relationships between thyroid hormones and thyroid-stimulating hormone with lipid profile in Euthyroid men. Int J Med Sci. 2014;11(4):349–55. https://doi.org/10.7150/ijms.7104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geng L, Xu X, Zhang H, Chen C, Hou Y, Yao G, et al. Comprehensive expression profile of long non-coding RNAs in peripheral blood mononuclear cells from patients with neuropsychiatric systemic lupus erythematosus. Ann Transl Med. 2020;8(6):349. https://doi.org/10.21037/atm.2020.03.25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas F. Lüscher. Frontiers in lipid research: lipoprotein(a), apolipoprotein C-III and E, and PCSK9 and inflammation. Eur Heart J. 2019;40(33):2741–4. https://doi.org/10.1093/eurheartj/ehz633.
Huang Z, Lu X, Huang L, Zhang C, Veldhuis JD, Cowley MA, et al. Stimulation of endogenous pulsatile growth hormone secretion by activation of growth hormone secretagogue receptor reduces the fat accumulation and improves the insulin sensitivity in obese mice. FASEB J. 2021;35(1):e21269. https://doi.org/10.1096/fj.202001924RR.
Article
CAS
PubMed
Google Scholar
Stanley TL, Fourman LT, Zheng I, et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and Glycemia in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2021;106(2):e520–33. https://doi.org/10.1210/clinem/dgaa792.
Zardi EM, Giorgi C, Zardi DM. Diagnostic approach to neuropsychiatric lupus erythematosus: what should we do? Postgrad Med. 2018;130(6):536–47. https://doi.org/10.1080/00325481.2018.1492309.
Article
PubMed
Google Scholar
Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677–86. https://doi.org/10.1002/art.34473.
Article
PubMed
PubMed Central
Google Scholar
Gronwall C, Akhter E, Oh C, Burlingame RW, Petri M, Silverman GJ. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin Immunol. 2012;142(3):390–8. https://doi.org/10.1016/j.clim.2012.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dema B, Charles N. Autoantibodies in SLE: specificities, Isotypes and receptors. Antibodies (Basel). 2016;5(1):2. https://doi.org/10.3390/antib5010002.
Article
CAS
Google Scholar
Dias-Santos A, Proenca RP, Tavares Ferreira J, et al. The role of ophthalmic imaging in central nervous system degeneration in systemic lupus erythematosus. Autoimmun Rev. 2018;17(6):617–24. https://doi.org/10.1016/j.autrev.2018.01.011.
Article
PubMed
Google Scholar
Aranow C, Diamond B, Backay M. Pathogensesis of the nervous system. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus Erythematosus and related syndromes. Philadelphia: Saunders; 2013. p. 363–7. https://doi.org/10.1016/B978-1-4377-1893-5.00028-5.
Chapter
Google Scholar
Ward MM. Premature morbidity from cardiovascular and cerebrovascular diseases in women with systemic lupus erythematosus. Arthritis Rheum. 1999 Feb;42(2):338–46. https://doi.org/10.1002/1529-0131(199902)42:2<338::AID-ANR17>3.0.CO;2-U.
Article
CAS
PubMed
Google Scholar
Zhang Y, Han H, Chu L. Neuropsychiatric lupus Erythematosus: future directions and challenges; a systematic review and survey. Clinics (Sao Paulo). 2020;75:e1515. https://doi.org/10.6061/clinics/2020/e1515. eCollection 2020.
Benedek M, Jauk E, Beaty RE, Fink A, Koschutnig K, Neubauer AC. Brain mechanisms associated with internally directed attention and self-generated thought. Sci Rep. 2016;6:22959. https://doi.org/10.1038/srep22959.
Mattfeld AT, Whitfield-Gabrieli S, Biederman J, Spencer T, Brown A, Fried R, et al. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain. Neuroimage Clin. 2016;10:274–82. https://doi.org/10.1016/j.nicl.2015.12.003.
Article
PubMed
Google Scholar
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis ResTher. 2012;14(Suppl. 4):S1. https://doi.org/10.1186/ar3918.
Article
CAS
Google Scholar
Han S, Zhuang H, Shumyak S, Yang L, Reeves WH. Mechanisms of autoantibody production insystemic lupus erythematosus. Front Immunol. 2015;6:228. https://doi.org/10.3389/fimmu.2015.00228.
Lamagna C, Hu Y, DeFranco AL, Lowell CA. B cell-specific loss of lyn kinase leads to autoimmunity. J Immunol. 2014;192(3):919–28. https://doi.org/10.4049/jimmunol.1301979.
Article
CAS
PubMed
Google Scholar
Duarte-García A, Romero-Díaz J, Juàrez S, Cicero-Casarrubias A, Fragoso-Loyo H, Nùñez-Alvarez C, et al. Disease activity, autoantibodies, and inflammatory molecules in serum and cerebrospinal fluid of patients with systemic lupus Erythematosus and cognitive dysfunction. PLoS One. 2018;13(5):e0196487. https://doi.org/10.1371/journal.pone.0196487. eCollection 2018.
Tibbling G, Link H, Ohman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest. 1977;37(5):385–90. https://doi.org/10.3109/00365517709091496.
Article
CAS
PubMed
Google Scholar
Abbott NJ, Mendonca LL, Dolman DE. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12(12):908–15. https://doi.org/10.1191/0961203303lu501oa.
Article
CAS
PubMed
Google Scholar
Idborg H, Eketjäll S, Pettersson S, Gustafsson JT, Zickert A, Kvarnström M, et al. TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000260. https://doi.org/10.1136/lupus-2018-000260.
White RG, Bass BH, Williams E. Lymphadenoid goitre and the syndrome of systemic lupus erythematosus. Lancet. 1961;277(7173):368–73. https://doi.org/10.1016/S0140-6736(61)91537-9.
Article
Google Scholar
Blich M, Rozin A, Edoute Y. Systemic lupus erythematosus and thyroid disease. Isr Med Assoc J. 2004;6(4):218–20.
PubMed
Google Scholar
Quinlan P, Nordlund A, Lind K, Gustafson D, Edman Å, Wallin A. Thyroid hormones are associated with poorer cognition in mild cognitive impairment. Dement Geriatr Cogn Disord. 2010;30(3):205–11. https://doi.org/10.1159/000319746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue C, Bian L, Xie YS, Yin ZF, Xu ZJ, Chen QZ, et al. Low fT3 is associated with diminished health-related quality of life in patients with acute coronary syndrome treated with drug-eluting stent: a longitudinal observational study. Oncotarget. 2017;8(55):94580–90. https://doi.org/10.18632/oncotarget.21811. eCollection 2017 Nov 7.
Lee JS, Soh Y, Kim H-G, Lee KM, Kwon YN, Yoon SS, et al. Interactive effects of Apolipoprotein E ε4 and Triiodothyronine on memory performance in patients with subjective cognitive decline. Front Med (Lausanne). 2020;7:298. https://doi.org/10.3389/fmed.2020.00298. eCollection 2020.
Bruce IN. ‘Not only...But also’: factors that contribute to accelerated atherosclerosis and premature coronary heart disease in systemic lupus erythematosus. Rheumatology. 2005;44(12):1492–502. https://doi.org/10.1093/rheumatology/kei142.
Article
CAS
PubMed
Google Scholar
Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger TA, Jansenmcwilliams L, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus Erythematosus: comparison with the Framingham study. Am J Epidemiol. 1997;145(5):408–15. https://doi.org/10.1093/oxfordjournals.aje.a009122.
Article
CAS
PubMed
Google Scholar
Vaziri ND, Moradi H. Mechanisms of dyslipidemia of chronic renal failure. Hemodial Int. 2006;10(1):1–7. https://doi.org/10.1111/j.1542-4758.2006.01168.x.
Article
PubMed
Google Scholar
Attman PO, Alaupovic P. Lipid and apolipoprotein profiles of uremic dyslipoproteinemia - relation to renal function and dialysis. Nephron. 1991;57(4):401–10. https://doi.org/10.1159/000186303.
Article
CAS
PubMed
Google Scholar
Peppa M, Betsi G, Dimitriadis G. Lipid abnormalities and Cardiometabolic risk inPatients with overt and subclinical thyroid disease. J Lipids. 2011;2011(575840):9. https://doi.org/10.1155/2011/575840. Epub 2011 Jul 18.
Zhang X, Liu L, Ma X, Hu W, Xu X, Huang S, et al. Clinical significance of non-thyroidal illness syndrome on disease activity and dyslipidemia in patients with SLE. PLoS One. 2020;15(4):e0231622. https://doi.org/10.1371/journal.pone.0231622.
Article
CAS
PubMed
PubMed Central
Google Scholar
William Rebeck G. The role of APOE on lipid homeostasis and inflammation in normal brains. J Lipid Res. 2017;58(8):1493–9. https://doi.org/10.1194/jlr.R075408.
Article
PubMed
Google Scholar
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors. Ageing Res Rev. 2017;37:146–61. https://doi.org/10.1016/j.arr.2017.06.002.
Article
CAS
PubMed
Google Scholar
David Marais A. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51(2):165–76. https://doi.org/10.1016/j.pathol.2018.11.002.
Article
CAS
PubMed
Google Scholar
Zhao N, Liu C-C, Qiao W, Bu G. Apolipoprotein E, receptors, and modulation of Alzheimer's disease. Biol Psychiatry. 2018 Feb 15;83(4):347–57. https://doi.org/10.1016/j.biopsych.2017.03.003.
Article
CAS
PubMed
Google Scholar
Lane-Donovan C, Wong WM, Durakoglugil MS, Wasser CR, Jiang S, Xian X, et al. Genetic restoration of plasma ApoE improves cognition and partially restores synaptic defects in ApoE-deficient mice. J Neurosci. 2016;36(39):10141–50. https://doi.org/10.1523/JNEUROSCI.1054-16.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Tao W, Li X, He L, Zhang J, Wei D, et al. The contribution of genetic factors to cognitive impairment and dementia: Apolipoprotein E gene, gene interactions, and polygenic risk. Int J Mol Sci. 2019;20(5):1177. https://doi.org/10.3390/ijms20051177.
Article
CAS
PubMed Central
Google Scholar
Millán J, Pintó X, Muñoz A, Zúñiga M, Rubiés-Prat J, Pallardo LF, et al. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009;5:757–65.
PubMed
PubMed Central
Google Scholar
Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, et al. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem. 2010;285(47):36958–68. https://doi.org/10.1074/jbc.M110.127829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawano M, Kawakami M, Otsuka M, Yashima H, Yaginuma T, Ueki A. Marked decrease of plasma apolipoprotein AI and AII in Japanese patients with late-onset non-familial Alzheimer's disease. Chim Acta. 1995;239(2):209–11. https://doi.org/10.1016/0009-8981(95)06115-t.
Article
CAS
Google Scholar
Morley JE, Kaiser F, Raum WJ, Perry HM 3rd, Flood JF, Jensen J, et al. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci U S A. 1997;94(14):7537–42. https://doi.org/10.1073/pnas.94.14.7537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rollero A, Murialdo G, Fonzi S, Garrone S, Gianelli MV, Gazzerro E, et al. Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology. 1998;38(2):73–9. https://doi.org/10.1159/000026520.
Article
CAS
PubMed
Google Scholar
Denko CW, Malemud CJ. Age-related changes in serum growth hormone, insulin-like growth Factor-1 and Somatostatin in system lupus Erythematosus. BMC Musculoskelet Disord. 2004;5:37. https://doi.org/10.1186/1471-2474-5-37.
Tumati S, Burger H, Martens S, van der Schouw YT, Aleman A. Association between cognition and serum insulin-like growth Factor-1 in Middle-Aged & Older men: an 8 year follow-up study. PLoS One. 2016;11(4):e0154450. https://doi.org/10.1371/journal.pone.0154450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin L, Shen F, Weinfeld M, et al. Insulin growth factor binding protein 7 (IGFBP7)-related cancer and IGFBP3 and IGFBP7 crosstalk. Front Oncol. 2020;10:727. https://doi.org/10.3389/fonc.2020.00727. eCollection 2020.
Jiang W, Xiang C, Cazacu S, Brodie C, Mikkelsen T. Insulin-like growth factor binding protein 7 mediates glioma cell growth and migration. Neoplasia. 2008;10(12):1335–42. https://doi.org/10.1593/neo.08694.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agbemenyah HY, Agis-Balboa RC, Burkhardt S, et al. Insulin growth factor binding protein 7 is a novel target to treat dementia. Neurobiol Dis. 2014;62:135–43. https://doi.org/10.1016/j.nbd.2013.09.011.
Article
CAS
PubMed
Google Scholar
Bar O, Gelb S, Atamny K, Anzi S, Ben-Zvi A. Angiomodulin (IGFBP7) is a cerebral specific angiocrine factor, but is probably not a blood-brain barrier inducer. Fluids Barriers CNS. 2020;17(1):27. https://doi.org/10.1186/s12987-020-00188-2.
Article
CAS
PubMed
PubMed Central
Google Scholar