Bardin T, Richette P. Definition of hyperuricemia and gouty conditions. Curr Opin Rheumatol. 2014;26:186–91. https://doi.org/10.1097/BOR.0000000000000028.
Article
CAS
PubMed
Google Scholar
Ragab G, Elshahaly M, Bardin T. Gout: an old disease in new perspective—a review. J Adv Res. 2017;8:495–511. https://doi.org/10.1016/j.jare.2017.04.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merriman T, Terkeltaub R. PPARGC1B: insight into the expression of the gouty inflammation phenotype: PPARGC1B and gouty inflammation. Rheumatology (Oxford). 2017;56:323–5. https://doi.org/10.1093/rheumatology/kew453.
Article
CAS
Google Scholar
Dalbeth N, Stamp LK, Merriman TR. The genetics of gout: Towards personalised medicine? BMC Med. 2017;15:108. https://doi.org/10.1186/s12916-017-0878-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54. https://doi.org/10.1038/ng.2500.
Article
CAS
PubMed
Google Scholar
Saag KG, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res Ther. 2006;8:S2. https://doi.org/10.1186/ar1907.
Article
PubMed
PubMed Central
Google Scholar
Rai SK, Aviña-Zubieta JA, McCormick N, De Vera MA, Shojania K, Sayre EC, et al. The rising prevalence and incidence of gout in British Columbia, Canada: Population-based trends from 2000 to 2012. Semin Arthritis Rheum. 2017;46:451–6. https://doi.org/10.1016/j.semarthrit.2016.08.006.
Article
PubMed
Google Scholar
Dehlin M, Drivelegka P, Sigurdardottir V, Svärd A, Jacobsson LTH. Incidence and prevalence of gout in Western Sweden. Arthritis Res Ther. 2016;18:164. https://doi.org/10.1186/s13075-016-1062-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zobbe K, Prieto-Alhambra D, Cordtz R, Højgaard P, Hindrup JS, Kristensen LE, et al. Secular trends in the incidence and prevalence of gout in Denmark from 1995 to 2015: a nationwide register-based study. Rheumatology (Oxford). 2019;58:836–9. https://doi.org/10.1093/rheumatology/key390.
Article
Google Scholar
Elfishawi MM, Zleik N, Kvrgic Z, Michet CJ, Crowson CS, Matteson EL, et al. Changes in the presentation of incident Gout and the risk of subsequent flares: a population-based study over 20 years. J Rheumatol. 2019. https://doi.org/10.3899/jrheum.190346.
Article
PubMed
PubMed Central
Google Scholar
Fischer A, Cloutier M, Goodfield J, Borrelli R, Marvin D, Dziarmaga A. The direct economic burden of Gout in an elderly Canadian population. J Rheumatol. 2017;44:95–101. https://doi.org/10.3899/jrheum.160300.
Article
PubMed
Google Scholar
Kapetanovic MC, Nilsson P, Turesson C, Englund M, Dalbeth N, Jacobsson L. The risk of clinically diagnosed gout by serum urate levels: results from 30 years follow-up of the Malmö Preventive Project cohort in southern Sweden. Arthritis Res Ther. 2018;20:190. https://doi.org/10.1186/s13075-018-1697-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J-W, Kwak SG, Lee H, Kim S-K, Choe J-Y, Park S-H. Prevalence and incidence of gout in Korea: data from the national health claims database 2007–2015. Rheumatol Int. 2017;37:1499–506. https://doi.org/10.1007/s00296-017-3768-4.
Article
PubMed
Google Scholar
Winnard D, Wright C, Taylor WJ, Jackson G, Te Karu L, Gow PJ, et al. National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology (Oxford). 2012;51:901–9. https://doi.org/10.1093/rheumatology/ker361.
Article
Google Scholar
Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16:380–90. https://doi.org/10.1038/s41584-020-0441-1.
Article
PubMed
Google Scholar
Bureau UC. American Community Survey (ACS). The United States Census Bureau n.d. https://www.census.gov/programs-surveys/acs (accessed May 5, 2021).
Krishnan E, Lienesch D, Kwoh CK. Gout in ambulatory care settings in the United States. J Rheumatol. 2008;35:498–501.
PubMed
Google Scholar
Roman Y, Tiirikainen M, Prom-Wormley E. The prevalence of the gout-associated polymorphism rs2231142 G>T in ABCG2 in a pregnant female Filipino cohort. Clin Rheumatol. 2020;39:2387–92. https://doi.org/10.1007/s10067-020-04994-9.
Article
PubMed
Google Scholar
Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19:358–71. https://doi.org/10.1053/j.ackd.2012.07.009.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Yang W, Li Y, Wei Z, Dan X. ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. BMC Med Genet. 2020;21:54. https://doi.org/10.1186/s12881-020-0987-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim D-H, Kim Y-G, Bae S-H, Ahn S, Hong S, Lee C-K, et al. Factors related to outcomes in lupus-related protein-losing enteropathy. Korean J Intern Med. 2015;30:906–12. https://doi.org/10.3904/kjim.2015.30.6.906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler F, Alghubayshi A, Roman Y. The epidemiology and genetics of hyperuricemia and Gout across major racial groups: a literature review and population genetics secondary database analysis. J Pers Med. 2021. https://doi.org/10.3390/jpm11030231.
Article
PubMed
PubMed Central
Google Scholar
Yu K-H, Chang P-Y, Chang S-C, Wu-Chou Y-H, Wu L-A, Chen D-P, et al. A comprehensive analysis of the association of common variants of ABCG2 with gout. Sci Rep. 2017;7:9988. https://doi.org/10.1038/s41598-017-10196-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YS, Kim Y, Park G, Kim S-K, Choe J-Y, Park BL, et al. Genetic analysis of ABCG2 and SLC2A9 gene polymorphisms in gouty arthritis in a Korean population. Korean J Intern Med. 2015;30:913–20. https://doi.org/10.3904/kjim.2015.30.6.913.
Article
PubMed
PubMed Central
Google Scholar
Cho SK, Kim B, Myung W, Chang Y, Ryu S, Kim H-N, et al. Polygenic analysis of the effect of common and low-frequency genetic variants on serum uric acid levels in Korean individuals. Sci Rep. 2020;10:9179. https://doi.org/10.1038/s41598-020-66064-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Son C-N, Bang S-Y, Cho S-K, Sung Y-K, Kim T-H, Bae S-C, et al. The frequency of single nucleotide polymorphisms and their association with uric acid concentration based on data from genome-wide association studies in the Korean population. Rheumatol Int. 2014;34:777–83. https://doi.org/10.1007/s00296-013-2939-1.
Article
CAS
PubMed
Google Scholar
Dong Z, Guo S, Yang Y, Wu J, Guan M, Zou H, et al. Association between ABCG2 Q141K polymorphism and gout risk affected by ethnicity and gender: a systematic review and meta-analysis. Int J Rheum Dis. 2015;18:382–91. https://doi.org/10.1111/1756-185X.12519.
Article
CAS
PubMed
Google Scholar
Narang RK, Topless R, Cadzow M, Gamble G, Stamp LK, Merriman TR, et al. Interactions between serum urate-associated genetic variants and sex on gout risk: analysis of the UK Biobank. Arthritis Res Ther. 2019;21:13. https://doi.org/10.1186/s13075-018-1787-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Jiang F, Zhang R, Tang S, Chen M, Peng D, et al. Serum uric acid levels are associated with polymorphisms in the SLC2A9, SF1, and GCKR genes in a Chinese population. Acta Pharmacol Sin. 2014;35:1421–7. https://doi.org/10.1038/aps.2014.87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Spencer KL, Voruganti VS, Jorgensen NW, Fornage M, Best LG, et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE Study. Am J Epidemiol. 2013;177:923–32. https://doi.org/10.1093/aje/kws330.
Article
PubMed
PubMed Central
Google Scholar
Dalbeth N, House ME, Gamble GD, Horne A, Pool B, Purvis L, et al. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann Rheum Dis. 2013;72:1868–73. https://doi.org/10.1136/annrheumdis-2012-202732.
Article
CAS
PubMed
Google Scholar
Mobasheri A, Neama G, Bell S, Richardson S, Carter SD. Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9. Cell Biol Int. 2002;26:297–300. https://doi.org/10.1006/cbir.2001.0850.
Article
CAS
PubMed
Google Scholar
Stark K, Reinhard W, Grassl M, Erdmann J, Schunkert H, Illig T, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease. PLoS ONE. 2009;4: e7729. https://doi.org/10.1371/journal.pone.0007729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5: e1000504. https://doi.org/10.1371/journal.pgen.1000504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2012;8:610–21. https://doi.org/10.1038/nrrheum.2012.144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakanishi T, Ohya K, Shimada S, Anzai N, Tamai I. Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Nephrol Dial Transplant. 2013;28:603–11. https://doi.org/10.1093/ndt/gfs574.
Article
CAS
PubMed
Google Scholar
Riches PL, Wright AF, Ralston SH. Recent insights into the pathogenesis of hyperuricaemia and gout. Hum Mol Genet. 2009;18:R177-184. https://doi.org/10.1093/hmg/ddp369.
Article
CAS
PubMed
Google Scholar
Jang WC, Nam Y-H, Park S-M, Ahn Y-C, Park S-H, Choe J-Y, et al. T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects. Clin Chim Acta. 2008;398:140–4. https://doi.org/10.1016/j.cca.2008.09.008.
Article
CAS
PubMed
Google Scholar
Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI, et al. Physiology of hyperuricemia and urate-lowering treatments. Front Med (Lausanne). 2018;5:160. https://doi.org/10.3389/fmed.2018.00160.
Article
Google Scholar
Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakayama A, Chiba T, et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metab Pharmacokinet. 2014;29:208–10. https://doi.org/10.2133/dmpk.dmpk-13-nt-070.
Article
CAS
PubMed
Google Scholar
Tj F, A P-G, Je H-M, Me M, R T, G M, et al. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Research & Therapy 2013. https://doi.org/10.1186/ar4417.
Nakayama A, Matsuo H, Shimizu T, Ogata H, Takada Y, Nakashima H, et al. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Hum Cell. 2013;26:133–6. https://doi.org/10.1007/s13577-013-0073-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes Silva L, Vangipurapu J, Kuulasmaa T, Laakso M. An intronic variant in the GCKR gene is associated with multiple lipids. Sci Rep. 2019;9:10240. https://doi.org/10.1038/s41598-019-46750-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onuma H, Tabara Y, Kawamoto R, Shimizu I, Kawamura R, Takata Y, et al. The GCKR rs780094 polymorphism is associated with susceptibility of type 2 diabetes, reduced fasting plasma glucose levels, increased triglycerides levels and lower HOMA-IR in Japanese population. J Hum Genet. 2010;55:600–4. https://doi.org/10.1038/jhg.2010.75.
Article
CAS
PubMed
Google Scholar
Wang J, Liu S, Wang B, Miao Z, Han L, Chu N, et al. Association between gout and polymorphisms in GCKR in male Han Chinese. Hum Genet. 2012;131:1261–5. https://doi.org/10.1007/s00439-012-1151-9.
Article
CAS
PubMed
Google Scholar
Vadakedath S, Kandi V. Probable potential role of urate transporter genes in the development of metabolic disorders. Cureus. 2018;10: e2382. https://doi.org/10.7759/cureus.2382.
Article
PubMed
PubMed Central
Google Scholar
Ogata H, Matsuo H, Sakiyama M, Higashino T, Kawaguchi M, Nakayama A, et al. Meta-analysis confirms an association between gout and a common variant of LRRC16A locus. Mod Rheumatol. 2017;27:553–5. https://doi.org/10.1080/14397595.2016.1218413.
Article
PubMed
Google Scholar
Okada Y, Sim X, Go MJ, Wu J-Y, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 2012;44:904–9. https://doi.org/10.1038/ng.2352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakiyama M, Matsuo H, Shimizu S, Chiba T, Nakayama A, Takada Y, et al. Common variant of leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility. Hum Cell. 2014;27:1–4. https://doi.org/10.1007/s13577-013-0081-8.
Article
CAS
PubMed
Google Scholar
Roman YM, Culhane-Pera KA, Menk J, Straka RJ. Assessment of genetic polymorphisms associated with hyperuricemia or gout in the Hmong. Per Med. 2016;13:429–40. https://doi.org/10.2217/pme-2016-0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roman YM, Lor K, Xiong T, Culhane-Pera K, Straka RJ. Gout prevalence in the Hmong: a prime example of health disparity and the role of community-based genetic research. Pers Med. 2021;18:311–27. https://doi.org/10.2217/pme-2020-0107.
Article
Google Scholar
Yi X-L, Li J, Meng D-M, Liu Y-J, Liu Y-H, Ma H-M, et al. An intron variant of SLC2A9 increases the risk for type 2 diabetes mellitus complicated with hyperuricemia in Chinese male population. Iran J Public Health. 2018;47:844–51.
PubMed
PubMed Central
Google Scholar
Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007;19:151–7. https://doi.org/10.1097/BOR.0b013e328032781a.
Article
CAS
PubMed
Google Scholar
Youssef, Roman The United States 2020 Census data: implications for precision medicine and the research landscape. Personalized Medicine 10.2217/pme-2021-0129